-
Dialogue with your Documents for Data-Driven Decision Making
When I started developing this application, my goal was to build an interactive and intelligent document reader. I wanted users to upload a document, ask a question about it, and have an AI generate responses based on the document’s content. So, here’s how I put everything together: github.com/josoroma/data-driven-decision-making OpenAI and Pinecone First, I created a user-friendly sidebar for users to input their API keys and environment variables. This is the first interaction point between the user and the application. The application relies on OpenAI and Pinecone for retrieving information and generating responses, hence the necessity of API keys. If you do not have a .env file with the necessary environment…
-
Rockeando el Mundo de la IA con Modelos de Lenguaje Avanzados
En nuestro mundo siempre en evolución de la tecnología, es esencial apreciar el notable progreso del Procesamiento de Lenguaje Natural (NLP). Regresando un poco en el tiempo, cada tarea de NLP necesitaba un modelo distinto, un proceso tedioso y que consumía mucho tiempo. Esto cambió con la introducción de los Transformers y el concepto de aprendizaje de transferencia en NLP. LLMs Generalistas Grandes corporaciones como Google encabezaron esta transformación al invertir pesadamente en la formación de modelos transformadores. Estos modelos funcionan como “generalistas“, con una sólida comprensión del lenguaje, lo que les permite realizar diversas tareas. Hoy en día, este avance ha evolucionado hacia el uso de modelos de lenguaje…
-
Rocking the AI World with Advanced Language Models
In our ever-evolving world of technology, it’s essential to appreciate the remarkable progress of Natural Language Processing (NLP). Rewinding back a little, each NLP task necessitated a distinct model, a tedious and time-consuming process. This changed with the introduction of Transformers and the concept of transfer learning in NLP. Generalist LLMs Large corporations like Google spearheaded this transformation by investing heavily in training transform models. These models serve as “generalists” with a robust understanding of language, allowing them to perform diverse tasks. Today, this advancement has morphed into the use of large language models (LLMs) capable of tasks like classification or question answering. It’s astounding to realize that the technology…